152,89 €
Machine Learning for Multimedia Content Analysis
Machine Learning for Multimedia Content Analysis
  • Sold out
Machine Learning for Multimedia Content Analysis
Machine Learning for Multimedia Content Analysis
El. knyga:
152,89 €
This volume introduces machine learning techniques that are particularly powerful and effective for modeling multimedia data and common tasks of multimedia content analysis. It systematically covers key machine learning techniques in an intuitive fashion and demonstrates their applications through case studies. Coverage includes examples of unsupervised learning, generative models and discriminative models. In addition, the book examines Maximum Margin Markov (M3) networks, which strive to comb…
0

Machine Learning for Multimedia Content Analysis (e-book) (used book) | bookbook.eu

Reviews

(3.60 Goodreads rating)

Description

This volume introduces machine learning techniques that are particularly powerful and effective for modeling multimedia data and common tasks of multimedia content analysis. It systematically covers key machine learning techniques in an intuitive fashion and demonstrates their applications through case studies. Coverage includes examples of unsupervised learning, generative models and discriminative models. In addition, the book examines Maximum Margin Markov (M3) networks, which strive to combine the advantages of both the graphical models and Support Vector Machines (SVM).

152,89 €
Log in and for this item
you will receive
1,53 Book Euros! ?

Electronic book:
Delivery after ordering is instant! Intended for reading only on a computer, tablet or other electronic device.

Lowest price in 30 days: 152,89 €

Lowest price recorded: Price has not changed


This volume introduces machine learning techniques that are particularly powerful and effective for modeling multimedia data and common tasks of multimedia content analysis. It systematically covers key machine learning techniques in an intuitive fashion and demonstrates their applications through case studies. Coverage includes examples of unsupervised learning, generative models and discriminative models. In addition, the book examines Maximum Margin Markov (M3) networks, which strive to combine the advantages of both the graphical models and Support Vector Machines (SVM).

Reviews

  • No reviews
0 customers have rated this item.
5
0%
4
0%
3
0%
2
0%
1
0%
(will not be displayed)