84,89 €
Arithmetic Geometry
Arithmetic Geometry
  • Sold out
Arithmetic Geometry
Arithmetic Geometry
El. knyga:
84,89 €
Arithmetic Geometry can be defined as the part of Algebraic Geometry connected with the study of algebraic varieties through arbitrary rings, in particular through non-algebraically closed fields. It lies at the intersection between classical algebraic geometry and number theory. A C.I.M.E. Summer School devoted to arithmetic geometry was held in Cetraro, Italy in September 2007, and presented some of the most interesting new developments in arithmetic geometry. This book collects the lecture n…
0

Arithmetic Geometry (e-book) (used book) | bookbook.eu

Reviews

Description

Arithmetic Geometry can be defined as the part of Algebraic Geometry connected with the study of algebraic varieties through arbitrary rings, in particular through non-algebraically closed fields. It lies at the intersection between classical algebraic geometry and number theory. A C.I.M.E. Summer School devoted to arithmetic geometry was held in Cetraro, Italy in September 2007, and presented some of the most interesting new developments in arithmetic geometry. This book collects the lecture notes which were written up by the speakers. The main topics concern diophantine equations, local-global principles, diophantine approximation and its relations to Nevanlinna theory, and rationally connected varieties. The book is divided into three parts, corresponding to the courses given by J-L Colliot-Thelene, Peter Swinnerton Dyer and Paul Vojta.

84,89 €
Log in and for this item
you will receive
0,85 Book Euros! ?

Electronic book:
Delivery after ordering is instant! Intended for reading only on a computer, tablet or other electronic device.

Lowest price in 30 days: 84,89 €

Lowest price recorded: Price has not changed


Arithmetic Geometry can be defined as the part of Algebraic Geometry connected with the study of algebraic varieties through arbitrary rings, in particular through non-algebraically closed fields. It lies at the intersection between classical algebraic geometry and number theory. A C.I.M.E. Summer School devoted to arithmetic geometry was held in Cetraro, Italy in September 2007, and presented some of the most interesting new developments in arithmetic geometry. This book collects the lecture notes which were written up by the speakers. The main topics concern diophantine equations, local-global principles, diophantine approximation and its relations to Nevanlinna theory, and rationally connected varieties. The book is divided into three parts, corresponding to the courses given by J-L Colliot-Thelene, Peter Swinnerton Dyer and Paul Vojta.

Reviews

  • No reviews
0 customers have rated this item.
5
0%
4
0%
3
0%
2
0%
1
0%
(will not be displayed)