240,56 €
267,29 €
-10% with code: EXTRA
Time Series
Time Series
240,56
267,29 €
  • We will send in 10–14 business days.
Focusing on Bayesian approaches and computations using analytic and simulation-based methods for inference, Time Series: Modeling, Computation, and Inference, Second Edition integrates mainstream approaches for time series modeling with significant recent developments in methodology and applications of time series analysis. It encompasses a graduate-level account of Bayesian time series modeling, analysis and forecasting, a broad range of references to state-of-the-art approaches to univariate…
  • Publisher:
  • ISBN-10: 1498747027
  • ISBN-13: 9781498747028
  • Format: 15.5 x 23.6 x 2.8 cm, hardcover
  • Language: English
  • SAVE -10% with code: EXTRA

Time Series (e-book) (used book) | Raquel Prado | bookbook.eu

Reviews

(4.67 Goodreads rating)

Description

Focusing on Bayesian approaches and computations using analytic and simulation-based methods for inference, Time Series: Modeling, Computation, and Inference, Second Edition integrates mainstream approaches for time series modeling with significant recent developments in methodology and applications of time series analysis. It encompasses a graduate-level account of Bayesian time series modeling, analysis and forecasting, a broad range of references to state-of-the-art approaches to univariate and multivariate time series analysis, and contacts research frontiers in multivariate time series modeling and forecasting.

It presents overviews of several classes of models and related methodology for inference, statistical computation for model fitting and assessment, and forecasting. It explores the connections between time- and frequency-domain approaches and develop various models and analyses using Bayesian formulations and computation, including use of computations based on Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) methods. It illustrates the models and methods with examples and case studies from a variety of fields, including signal processing, biomedicine, environmental science, and finance.

Along with core models and methods, the book represents state-of-the art approaches to analysis and forecasting in challenging time series problems. It also demonstrates the growth of time series analysis into new application areas in recent years, and contacts recent and relevant modeling developments and research challenges.

New in the second edition:

  • Expanded on aspects of core model theory and methodology.
  • Multiple new examples and exercises.
  • Detailed development of dynamic factor models.
  • Updated discussion and connections with recent and current research frontiers.

EXTRA 10 % discount with code: EXTRA

240,56
267,29 €
We will send in 10–14 business days.

The promotion ends in 18d.03:48:10

The discount code is valid when purchasing from 10 €. Discounts do not stack.

Log in and for this item
you will receive 2,67 Book Euros!?
  • Author: Raquel Prado
  • Publisher:
  • ISBN-10: 1498747027
  • ISBN-13: 9781498747028
  • Format: 15.5 x 23.6 x 2.8 cm, hardcover
  • Language: English English

Focusing on Bayesian approaches and computations using analytic and simulation-based methods for inference, Time Series: Modeling, Computation, and Inference, Second Edition integrates mainstream approaches for time series modeling with significant recent developments in methodology and applications of time series analysis. It encompasses a graduate-level account of Bayesian time series modeling, analysis and forecasting, a broad range of references to state-of-the-art approaches to univariate and multivariate time series analysis, and contacts research frontiers in multivariate time series modeling and forecasting.

It presents overviews of several classes of models and related methodology for inference, statistical computation for model fitting and assessment, and forecasting. It explores the connections between time- and frequency-domain approaches and develop various models and analyses using Bayesian formulations and computation, including use of computations based on Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) methods. It illustrates the models and methods with examples and case studies from a variety of fields, including signal processing, biomedicine, environmental science, and finance.

Along with core models and methods, the book represents state-of-the art approaches to analysis and forecasting in challenging time series problems. It also demonstrates the growth of time series analysis into new application areas in recent years, and contacts recent and relevant modeling developments and research challenges.

New in the second edition:

  • Expanded on aspects of core model theory and methodology.
  • Multiple new examples and exercises.
  • Detailed development of dynamic factor models.
  • Updated discussion and connections with recent and current research frontiers.

Reviews

  • No reviews
0 customers have rated this item.
5
0%
4
0%
3
0%
2
0%
1
0%
(will not be displayed)