Reviews
Description
Definition of stochastic process. Cylinder #x03C3;-algebra, finite-dimensional distributions, the Kolmogorov theorem.- Characteristics of a stochastic process. Mean and covariance functions. Characteristic functions.- Trajectories. Modifications. Filtrations.- Continuity. Differentiability. Integrability.- Stochastic processes with independent increments. Wiener and Poisson processes. Poisson point measures.- Gaussian processes.- Martingales and related processes in discrete and continuous time. Stopping times.- Stationary discrete- and continuous-time processes. Stochastic integral over measure with orthogonal values.- Prediction and interpolation.- Markov chains: Discrete and continuous time.- Renewal theory. Queueing theory.- Markov and diffusion processes.- It#x00F4; stochastic integral. It#x00F4; formula. Tanaka formula.- Stochastic differential equations.- Optimal stopping of random sequences and processes.- Measures in a functional spaces. Weak convergence, probability metrics. Functional limit theorems.- Statistics of stochastic processes.- Stochastic processes in financial mathematics (discrete time).- Stochastic processes in financial mathematics (continuous time).- Basic functionals of the risk theory.
EXTRA 10 % discount with code: EXTRA
The promotion ends in 23d.03:33:36
The discount code is valid when purchasing from 10 €. Discounts do not stack.
Definition of stochastic process. Cylinder #x03C3;-algebra, finite-dimensional distributions, the Kolmogorov theorem.- Characteristics of a stochastic process. Mean and covariance functions. Characteristic functions.- Trajectories. Modifications. Filtrations.- Continuity. Differentiability. Integrability.- Stochastic processes with independent increments. Wiener and Poisson processes. Poisson point measures.- Gaussian processes.- Martingales and related processes in discrete and continuous time. Stopping times.- Stationary discrete- and continuous-time processes. Stochastic integral over measure with orthogonal values.- Prediction and interpolation.- Markov chains: Discrete and continuous time.- Renewal theory. Queueing theory.- Markov and diffusion processes.- It#x00F4; stochastic integral. It#x00F4; formula. Tanaka formula.- Stochastic differential equations.- Optimal stopping of random sequences and processes.- Measures in a functional spaces. Weak convergence, probability metrics. Functional limit theorems.- Statistics of stochastic processes.- Stochastic processes in financial mathematics (discrete time).- Stochastic processes in financial mathematics (continuous time).- Basic functionals of the risk theory.
Reviews