Reviews
Description
The simulation of the vehicle's environmental sensors, the so-called sensor simulation, is crucial for testing and validating autonomous driving. Automobile manufacturers are increasingly focusing on a standardized architecture with a high level of abstraction. In order to simulate the sensors, such as radar sensors, most realistically on a point cloud level, data-based methods are used in many cases. In general, and specifically in case of radar sensors, there are still challenges to be faced. Therefore, four research questions are addressed: Is it possible to generate synthetic training data for data-based models? Which statistical approaches are suitable to simulate radar point clouds and how shall their learning capacities be evaluated? Is there a modeling approach to circumvent the disadvantages of statistical modeling? How to tackle the statistical nature of radar sensors during validation?
EXTRA 10 % discount with code: EXTRA
The promotion ends in 20d.02:01:53
The discount code is valid when purchasing from 10 €. Discounts do not stack.
The simulation of the vehicle's environmental sensors, the so-called sensor simulation, is crucial for testing and validating autonomous driving. Automobile manufacturers are increasingly focusing on a standardized architecture with a high level of abstraction. In order to simulate the sensors, such as radar sensors, most realistically on a point cloud level, data-based methods are used in many cases. In general, and specifically in case of radar sensors, there are still challenges to be faced. Therefore, four research questions are addressed: Is it possible to generate synthetic training data for data-based models? Which statistical approaches are suitable to simulate radar point clouds and how shall their learning capacities be evaluated? Is there a modeling approach to circumvent the disadvantages of statistical modeling? How to tackle the statistical nature of radar sensors during validation?
Reviews