90,98 €
101,09 €
-10% with code: EXTRA
Robust Estimation and Applications in Robotics
Robust Estimation and Applications in Robotics
90,98
101,09 €
  • We will send in 10–14 business days.
Solving estimation problems is a fundamental component of numerous robotics applications. Prominent examples involve pose estimation, point cloud alignment, and object tracking. Algorithms for solving these estimation problems need to cope with new challenges due to an increased use of potentially poor low-cost sensors, and an ever growing deployment of robotic algorithms in consumer products, which operate in potentially unknown environments. These algorithms need to be capable of being robust…
  • Publisher:
  • ISBN-10: 168083214X
  • ISBN-13: 9781680832143
  • Format: 15.6 x 23.4 x 0.3 cm, softcover
  • Language: English
  • SAVE -10% with code: EXTRA

Robust Estimation and Applications in Robotics (e-book) (used book) | bookbook.eu

Reviews

Description

Solving estimation problems is a fundamental component of numerous robotics applications. Prominent examples involve pose estimation, point cloud alignment, and object tracking. Algorithms for solving these estimation problems need to cope with new challenges due to an increased use of potentially poor low-cost sensors, and an ever growing deployment of robotic algorithms in consumer products, which operate in potentially unknown environments. These algorithms need to be capable of being robust against strong nonlinearities, high uncertainty levels, and numerous outliers. However, particularly in robotics, the Gaussian assumption is prevalent in solutions to multivariate parameter estimation problems without providing the desired level of robustness. Robust Estimation and Applications in Robotics sets out to address the aforementioned challenges by providing an introduction to robust estimation with a particular focus on robotics. It starts by providing a concise overview of the theory of M-estimation. M-estimators share many of the convenient properties of least-squares estimators, and at the same time are much more robust to deviations from the Gaussian model assumption. It goes on to present several example applications where M-Estimation is used to increase robustness against nonlinearities and outliers. Robust Estimation and Applications in Robotics is an ideal introduction to robust statistics that only requires preliminary knowledge of probability theory. It also includes examples of robotics applications where robust statistical tools make a difference.

EXTRA 10 % discount with code: EXTRA

90,98
101,09 €
We will send in 10–14 business days.

The promotion ends in 20d.15:32:47

The discount code is valid when purchasing from 10 €. Discounts do not stack.

Log in and for this item
you will receive 1,01 Book Euros!?
  • Author: Michael Bosse
  • Publisher:
  • ISBN-10: 168083214X
  • ISBN-13: 9781680832143
  • Format: 15.6 x 23.4 x 0.3 cm, softcover
  • Language: English English

Solving estimation problems is a fundamental component of numerous robotics applications. Prominent examples involve pose estimation, point cloud alignment, and object tracking. Algorithms for solving these estimation problems need to cope with new challenges due to an increased use of potentially poor low-cost sensors, and an ever growing deployment of robotic algorithms in consumer products, which operate in potentially unknown environments. These algorithms need to be capable of being robust against strong nonlinearities, high uncertainty levels, and numerous outliers. However, particularly in robotics, the Gaussian assumption is prevalent in solutions to multivariate parameter estimation problems without providing the desired level of robustness. Robust Estimation and Applications in Robotics sets out to address the aforementioned challenges by providing an introduction to robust estimation with a particular focus on robotics. It starts by providing a concise overview of the theory of M-estimation. M-estimators share many of the convenient properties of least-squares estimators, and at the same time are much more robust to deviations from the Gaussian model assumption. It goes on to present several example applications where M-Estimation is used to increase robustness against nonlinearities and outliers. Robust Estimation and Applications in Robotics is an ideal introduction to robust statistics that only requires preliminary knowledge of probability theory. It also includes examples of robotics applications where robust statistical tools make a difference.

Reviews

  • No reviews
0 customers have rated this item.
5
0%
4
0%
3
0%
2
0%
1
0%
(will not be displayed)