112,22 €
124,69 €
-10% with code: EXTRA
Recommender Systems and the Social Web
Recommender Systems and the Social Web
112,22
124,69 €
  • We will send in 10–14 business days.
There is an increasing demand for recommender systems due to the information overload users are facing on the Web. The goal of a recommender system is to provide personalized recommendations of products or services to users. With the advent of the Social Web, user-generated content has enriched the social dimension of the Web. As user-provided content data also tells us something about the user, one can learn the user's individual preferences from the Social Web. This opens up completely new op…
124.69
  • Publisher:
  • Year: 2013
  • Pages: 112
  • ISBN-10: 3658019476
  • ISBN-13: 9783658019471
  • Format: 14.7 x 20.6 x 1 cm, minkšti viršeliai
  • Language: English
  • SAVE -10% with code: EXTRA

Recommender Systems and the Social Web (e-book) (used book) | bookbook.eu

Reviews

(4.00 Goodreads rating)

Description

There is an increasing demand for recommender systems due to the information overload users are facing on the Web. The goal of a recommender system is to provide personalized recommendations of products or services to users. With the advent of the Social Web, user-generated content has enriched the social dimension of the Web. As user-provided content data also tells us something about the user, one can learn the user's individual preferences from the Social Web. This opens up completely new opportunities and challenges for recommender systems research. Fatih Gedikli deals with the question of how user-provided tagging data can be used to build better recommender systems. A tag recommender algorithm is proposed which recommends tags for users to annotate their favorite online resources. The author also proposes algorithms which exploit the user-provided tagging data and produce more accurate recommendations. On the basis of this idea, he shows how tags can be used to explain to the user the automatically generated recommendations in a clear and intuitively understandable form. With his book, Fatih Gedikli gives us an outlook on the next generation of recommendation systems in the Social Web sphere.

EXTRA 10 % discount with code: EXTRA

112,22
124,69 €
We will send in 10–14 business days.

The promotion ends in 21d.22:32:07

The discount code is valid when purchasing from 10 €. Discounts do not stack.

Log in and for this item
you will receive 1,25 Book Euros!?
  • Author: Fatih Gedikli
  • Publisher:
  • Year: 2013
  • Pages: 112
  • ISBN-10: 3658019476
  • ISBN-13: 9783658019471
  • Format: 14.7 x 20.6 x 1 cm, minkšti viršeliai
  • Language: English English

There is an increasing demand for recommender systems due to the information overload users are facing on the Web. The goal of a recommender system is to provide personalized recommendations of products or services to users. With the advent of the Social Web, user-generated content has enriched the social dimension of the Web. As user-provided content data also tells us something about the user, one can learn the user's individual preferences from the Social Web. This opens up completely new opportunities and challenges for recommender systems research. Fatih Gedikli deals with the question of how user-provided tagging data can be used to build better recommender systems. A tag recommender algorithm is proposed which recommends tags for users to annotate their favorite online resources. The author also proposes algorithms which exploit the user-provided tagging data and produce more accurate recommendations. On the basis of this idea, he shows how tags can be used to explain to the user the automatically generated recommendations in a clear and intuitively understandable form. With his book, Fatih Gedikli gives us an outlook on the next generation of recommendation systems in the Social Web sphere.

Reviews

  • No reviews
0 customers have rated this item.
5
0%
4
0%
3
0%
2
0%
1
0%
(will not be displayed)