Reviews
Description
The first book devoted exclusively to quantitative graph theory, Quantitative Graph Theory: Mathematical Foundations and Applications presents and demonstrates existing and novel methods for analyzing graphs quantitatively. Incorporating interdisciplinary knowledge from graph theory, information theory, measurement theory, and statistical techniques, this book covers a wide range of quantitative-graph theoretical concepts and methods, including those pertaining to real and random graphs such as:
Through its broad coverage, Quantitative Graph Theory: Mathematical Foundations and Applications fills a gap in the contemporary literature of discrete and applied mathematics, computer science, systems biology, and related disciplines. It is intended for researchers as well as graduate and advanced undergraduate students in the fields of mathematics, computer science, mathematical chemistry, cheminformatics, physics, bioinformatics, and systems biology.
EXTRA 10 % discount with code: EXTRA
The promotion ends in 17d.00:24:12
The discount code is valid when purchasing from 10 €. Discounts do not stack.
The first book devoted exclusively to quantitative graph theory, Quantitative Graph Theory: Mathematical Foundations and Applications presents and demonstrates existing and novel methods for analyzing graphs quantitatively. Incorporating interdisciplinary knowledge from graph theory, information theory, measurement theory, and statistical techniques, this book covers a wide range of quantitative-graph theoretical concepts and methods, including those pertaining to real and random graphs such as:
Through its broad coverage, Quantitative Graph Theory: Mathematical Foundations and Applications fills a gap in the contemporary literature of discrete and applied mathematics, computer science, systems biology, and related disciplines. It is intended for researchers as well as graduate and advanced undergraduate students in the fields of mathematics, computer science, mathematical chemistry, cheminformatics, physics, bioinformatics, and systems biology.
Reviews