112,31 €
124,79 €
-10% with code: EXTRA
Progress in Drug Research
Progress in Drug Research
112,31
124,79 €
  • We will send in 10–14 business days.
Due tothedevelopmentofdrugresistanceandotherlimitationsinthe treat ment of AIDS patients with reverse transcriptase (RT) inhibitors like zidovu dineandothers, itbecamenecessarytoexploreantiviralagentsactingontar getsotherthan RT. Inthepastfewyears, hundredsofHIVproteaseinhibitoLs have been synthesized and tested. Among these protease inhibitors, saquinavir, ritonavir, indinavir and nelfinavir have been marketed during 1995-1997. In this review, emphasis is placed on the development of HIV prote…
  • Publisher:
  • ISBN-10: 3034897987
  • ISBN-13: 9783034897983
  • Format: 17 x 24.4 x 1.8 cm, softcover
  • Language: English
  • SAVE -10% with code: EXTRA

Progress in Drug Research (e-book) (used book) | bookbook.eu

Reviews

Description

Due tothedevelopmentofdrugresistanceandotherlimitationsinthe treat ment of AIDS patients with reverse transcriptase (RT) inhibitors like zidovu dineandothers, itbecamenecessarytoexploreantiviralagentsactingontar getsotherthan RT. Inthepastfewyears, hundredsofHIVproteaseinhibitoLs have been synthesized and tested. Among these protease inhibitors, saquinavir, ritonavir, indinavir and nelfinavir have been marketed during 1995-1997. In this review, emphasis is placed on the development of HIV protease inhibitors as antiviral agents against HIV, structure-activity rela tionship (SAR) analysis ofsaquinavirand relatedcompounds, comparisonof four marketed HIV protease inhibitors, and future prospect in developing new anti-HIV drugs. 2 Introduction HIV protease inhibitors 3 HIV protease as a target for chemotherapy HIV protease was first suggested as a potential target for AIDS therapy by Kramer et a1. in 1986 [5]. HIV protease is a proteolytic enzyme responsible for cleaving large numbers of amino acid sequences. This enzyme regulates conversionoftheselargeaminoacid sequencesintobiologicallyactive struc tural and functional protein products. Specifically, HIV protease is responsi the enzymatic processing of the gagand gag-pol genes of HIV, which ble for encode for functional core proteins and viral enzymes (reverse transcriptase, ribonuclease H, integrase, and HIV protease). The polyproteins encoded by the gagand gag-pol genes undergo post-translational processing by HIV pro tease to form functional protein products as the viral particles budding out from infected cells. Therefore, inhibition of HIV protease by a protease inhibitor results in the release ofimmature, noninfectious viral particles [4]."

EXTRA 10 % discount with code: EXTRA

112,31
124,79 €
We will send in 10–14 business days.

The promotion ends in 20d.15:50:21

The discount code is valid when purchasing from 10 €. Discounts do not stack.

Log in and for this item
you will receive 1,25 Book Euros!?
  • Author: Ernst Jucker
  • Publisher:
  • ISBN-10: 3034897987
  • ISBN-13: 9783034897983
  • Format: 17 x 24.4 x 1.8 cm, softcover
  • Language: English English

Due tothedevelopmentofdrugresistanceandotherlimitationsinthe treat ment of AIDS patients with reverse transcriptase (RT) inhibitors like zidovu dineandothers, itbecamenecessarytoexploreantiviralagentsactingontar getsotherthan RT. Inthepastfewyears, hundredsofHIVproteaseinhibitoLs have been synthesized and tested. Among these protease inhibitors, saquinavir, ritonavir, indinavir and nelfinavir have been marketed during 1995-1997. In this review, emphasis is placed on the development of HIV protease inhibitors as antiviral agents against HIV, structure-activity rela tionship (SAR) analysis ofsaquinavirand relatedcompounds, comparisonof four marketed HIV protease inhibitors, and future prospect in developing new anti-HIV drugs. 2 Introduction HIV protease inhibitors 3 HIV protease as a target for chemotherapy HIV protease was first suggested as a potential target for AIDS therapy by Kramer et a1. in 1986 [5]. HIV protease is a proteolytic enzyme responsible for cleaving large numbers of amino acid sequences. This enzyme regulates conversionoftheselargeaminoacid sequencesintobiologicallyactive struc tural and functional protein products. Specifically, HIV protease is responsi the enzymatic processing of the gagand gag-pol genes of HIV, which ble for encode for functional core proteins and viral enzymes (reverse transcriptase, ribonuclease H, integrase, and HIV protease). The polyproteins encoded by the gagand gag-pol genes undergo post-translational processing by HIV pro tease to form functional protein products as the viral particles budding out from infected cells. Therefore, inhibition of HIV protease by a protease inhibitor results in the release ofimmature, noninfectious viral particles [4]."

Reviews

  • No reviews
0 customers have rated this item.
5
0%
4
0%
3
0%
2
0%
1
0%
(will not be displayed)