Reviews
Description
1. The Number of Primes Below a Given Limit.- What Is a Prime Number?.- The Fundamental Theorem of Arithmetic.- Which Numbers Are Primes? The Sieve of Eratosthenes.- General Remarks Concerning Computer Programs.- A Sieve Program.- Compact Prime Tables.- Hexadecimal Compact Prime Tables.- Difference Between Consecutive Primes.- The Number of Primes Below x.- Meissel's Formula.- Evaluation of Pk(x, a).- Lehmer's Formula.- Computations.- A Computation Using Meissel's Formula.- A Computation Using Lehmer's Formula.- A Computer Program Using Lehmer's Formula.- Mapes' Method.- Deduction of Formulas.- A Worked Example.- Mapes' Algorithm.- Programming Mapes' Algorithm.- Recent Developments.- Results.- Computational Complexity.- Comparison Between the Methods Discussed.- 2. The Primes Viewed at Large.- No Polynomial Can Produce Only Primes.- Formulas Yielding All Primes.- The Distribution of Primes Viewed at Large. Euclid's Theorem.- The Formulas of Gauss and Legendre for ?(x). The Prime Number Theorem.- The Chebyshev Function ?(x).- The Riemann Zeta-function.- The Zeros of the Zeta-function.- Conversion From f(x) Back to ?(x).- The Riemann Prime Number Formula.- The Sign of li x ? ?(x).- The Influence of the Complex Zeros of ?(s) on ?(x).- The Remainder Term in the Prime Number Theorem.- Effective Inequalities for ?(x), pn, and ?(x).- The Number of Primes in Arithmetic Progressions.- 3. Subtleties in the Distribution of Primes.- The Distribution of Primes in Short Intervals.- Twins and Some Other Constellations of Primes.- Admissible Constellations of Primes.- The Hardy-Littlewood Constants.- The Prime k-Tuples Conjecture.- Theoretical Evidence in Favour of the Prime k-Tuples Conjecture.- Numerical Evidence in Favour of the Prime k-Tuples Conjecture.- The Second Hardy-Littlewood Conjecture.- The Midpoint Sieve.- Modification of the Midpoint Sieve.- Construction of Superdense Admissible Constellations.- Some Dense Clusters of Primes.- The Distribution of Primes Between the Two Series 4n + 1 and 4n + 3.- Graph of the Function ?4,3(x) ? ?4,1(x).- The Negative Regions.- The Negative Blocks.- Large Gaps Between Consecutive Primes.- The Cramér Conjecture.- 4. The Recognition of Primes.- Tests of Primality and of Compositeness.- Factorization Methods as Tests of Compositeness.- Fermat's Theorem as Compositeness Test.- Fermat's Theorem as Primality Test.- Pseudoprimes and Probable Primes.- A Computer Program for Fermat's Test.- The Labor Involved in a Fermat Test.- Carmichael Numbers.- Euler Pseudoprimes.- Strong Pseudoprimes and a Primality Test.- A Computer Program for Strong Pseudoprime Tests.- Counts of Pseudoprimes and Carmichael Numbers.- Rigorous Primality Proofs.- Lehmer's Converse of Fermat's Theorem.- Formal Proof of Theorem 4.3.- Ad Hoc Search for a Primitive Root.- The Use of Several Bases.- Fermat Numbers and Pepin's Theorem.- Cofactors of Fermat Numbers.- Generalized Fermat Numbers.- A Relaxed Converse of Fermat's Theorem.- Proth's Theorem.- Tests of Compositeness for Numbers of the form N = h - 2n ± k.- An Alternative Approach.- Certificates of Primality.- Primality Tests of Lucasian Type.- Lucas Sequences.- The Fibonacci Numbers.- Large Subscripts.- An Alternative Deduction.- Divisibility Properties of the Numbers Un.- Primality Proofs by Aid of Lucas Sequences.- Lucas Tests for Mersenne Numbers.- A Relaxation of Theorem 4.8.- Pocklington's Theorem.- Lehmer-Pocklington's Theorem.- Pocklington-Type Theorems for Lucas Sequences.- Primality Tests for Integers of the form N = h - 2n ? 1, when 3?h.- Primality Tests for N = h - 2n ? 1, when 3?h.- The Combined N ? 1 and N + 1 Test.- Lucas Pseudoprimes.- Modern Primality Proofs.- The Jacobi Sum Primality Test.- Three Lemmas.- Lenstra's Theorem.- The Sets P and Q.- Running Time for the APRCL Test.- Elliptic Curve Primality Proving, ECPP.- The Goldwasser-Kilian Test.- Atkin's Test.- 5. Classical Methods of Factorization.- When Do We Attempt Factorization?.- Tri
EXTRA 10 % discount with code: EXTRA
The promotion ends in 22d.20:01:21
The discount code is valid when purchasing from 10 €. Discounts do not stack.
1. The Number of Primes Below a Given Limit.- What Is a Prime Number?.- The Fundamental Theorem of Arithmetic.- Which Numbers Are Primes? The Sieve of Eratosthenes.- General Remarks Concerning Computer Programs.- A Sieve Program.- Compact Prime Tables.- Hexadecimal Compact Prime Tables.- Difference Between Consecutive Primes.- The Number of Primes Below x.- Meissel's Formula.- Evaluation of Pk(x, a).- Lehmer's Formula.- Computations.- A Computation Using Meissel's Formula.- A Computation Using Lehmer's Formula.- A Computer Program Using Lehmer's Formula.- Mapes' Method.- Deduction of Formulas.- A Worked Example.- Mapes' Algorithm.- Programming Mapes' Algorithm.- Recent Developments.- Results.- Computational Complexity.- Comparison Between the Methods Discussed.- 2. The Primes Viewed at Large.- No Polynomial Can Produce Only Primes.- Formulas Yielding All Primes.- The Distribution of Primes Viewed at Large. Euclid's Theorem.- The Formulas of Gauss and Legendre for ?(x). The Prime Number Theorem.- The Chebyshev Function ?(x).- The Riemann Zeta-function.- The Zeros of the Zeta-function.- Conversion From f(x) Back to ?(x).- The Riemann Prime Number Formula.- The Sign of li x ? ?(x).- The Influence of the Complex Zeros of ?(s) on ?(x).- The Remainder Term in the Prime Number Theorem.- Effective Inequalities for ?(x), pn, and ?(x).- The Number of Primes in Arithmetic Progressions.- 3. Subtleties in the Distribution of Primes.- The Distribution of Primes in Short Intervals.- Twins and Some Other Constellations of Primes.- Admissible Constellations of Primes.- The Hardy-Littlewood Constants.- The Prime k-Tuples Conjecture.- Theoretical Evidence in Favour of the Prime k-Tuples Conjecture.- Numerical Evidence in Favour of the Prime k-Tuples Conjecture.- The Second Hardy-Littlewood Conjecture.- The Midpoint Sieve.- Modification of the Midpoint Sieve.- Construction of Superdense Admissible Constellations.- Some Dense Clusters of Primes.- The Distribution of Primes Between the Two Series 4n + 1 and 4n + 3.- Graph of the Function ?4,3(x) ? ?4,1(x).- The Negative Regions.- The Negative Blocks.- Large Gaps Between Consecutive Primes.- The Cramér Conjecture.- 4. The Recognition of Primes.- Tests of Primality and of Compositeness.- Factorization Methods as Tests of Compositeness.- Fermat's Theorem as Compositeness Test.- Fermat's Theorem as Primality Test.- Pseudoprimes and Probable Primes.- A Computer Program for Fermat's Test.- The Labor Involved in a Fermat Test.- Carmichael Numbers.- Euler Pseudoprimes.- Strong Pseudoprimes and a Primality Test.- A Computer Program for Strong Pseudoprime Tests.- Counts of Pseudoprimes and Carmichael Numbers.- Rigorous Primality Proofs.- Lehmer's Converse of Fermat's Theorem.- Formal Proof of Theorem 4.3.- Ad Hoc Search for a Primitive Root.- The Use of Several Bases.- Fermat Numbers and Pepin's Theorem.- Cofactors of Fermat Numbers.- Generalized Fermat Numbers.- A Relaxed Converse of Fermat's Theorem.- Proth's Theorem.- Tests of Compositeness for Numbers of the form N = h - 2n ± k.- An Alternative Approach.- Certificates of Primality.- Primality Tests of Lucasian Type.- Lucas Sequences.- The Fibonacci Numbers.- Large Subscripts.- An Alternative Deduction.- Divisibility Properties of the Numbers Un.- Primality Proofs by Aid of Lucas Sequences.- Lucas Tests for Mersenne Numbers.- A Relaxation of Theorem 4.8.- Pocklington's Theorem.- Lehmer-Pocklington's Theorem.- Pocklington-Type Theorems for Lucas Sequences.- Primality Tests for Integers of the form N = h - 2n ? 1, when 3?h.- Primality Tests for N = h - 2n ? 1, when 3?h.- The Combined N ? 1 and N + 1 Test.- Lucas Pseudoprimes.- Modern Primality Proofs.- The Jacobi Sum Primality Test.- Three Lemmas.- Lenstra's Theorem.- The Sets P and Q.- Running Time for the APRCL Test.- Elliptic Curve Primality Proving, ECPP.- The Goldwasser-Kilian Test.- Atkin's Test.- 5. Classical Methods of Factorization.- When Do We Attempt Factorization?.- Tri
Reviews