85,13 €
94,59 €
-10% with code: EXTRA
Practical Simulations for Machine Learning
Practical Simulations for Machine Learning
85,13
94,59 €
  • We will send in 10–14 business days.
Simulation and synthesis are core parts of the future of AI and machine learning. Consider: programmers, data scientists, and machine learning engineers can create the brain of a self-driving car without the car. Rather than use information from the real world, you can synthesize artificial data using simulations to train traditional machine learning models. Thatâ s just the beginning. With this practical book, youâ ll explore the possibilities of simulation- and synthesis-based machine lear…
94.59
  • SAVE -10% with code: EXTRA

Practical Simulations for Machine Learning (e-book) (used book) | bookbook.eu

Reviews

Description

Simulation and synthesis are core parts of the future of AI and machine learning. Consider: programmers, data scientists, and machine learning engineers can create the brain of a self-driving car without the car. Rather than use information from the real world, you can synthesize artificial data using simulations to train traditional machine learning models. Thatâ s just the beginning.

With this practical book, youâ ll explore the possibilities of simulation- and synthesis-based machine learning and AI, concentrating on deep reinforcement learning and imitation learning techniques. AI and ML are increasingly data driven, and simulations are a powerful, engaging way to unlock their full potential.

You'll learn how to:

  • Design an approach for solving ML and AI problems using simulations with the Unity engine
  • Use a game engine to synthesize images for use as training data
  • Create simulation environments designed for training deep reinforcement learning and imitation learning models
  • Use and apply efficient general-purpose algorithms for simulation-based ML, such as proximal policy optimization
  • Train a variety of ML models using different approaches
  • Enable ML tools to work with industry-standard game development tools, using PyTorch, and the Unity ML-Agents and Perception Toolkits

EXTRA 10 % discount with code: EXTRA

85,13
94,59 €
We will send in 10–14 business days.

The promotion ends in 21d.15:02:37

The discount code is valid when purchasing from 10 €. Discounts do not stack.

Log in and for this item
you will receive 0,95 Book Euros!?

Simulation and synthesis are core parts of the future of AI and machine learning. Consider: programmers, data scientists, and machine learning engineers can create the brain of a self-driving car without the car. Rather than use information from the real world, you can synthesize artificial data using simulations to train traditional machine learning models. Thatâ s just the beginning.

With this practical book, youâ ll explore the possibilities of simulation- and synthesis-based machine learning and AI, concentrating on deep reinforcement learning and imitation learning techniques. AI and ML are increasingly data driven, and simulations are a powerful, engaging way to unlock their full potential.

You'll learn how to:

  • Design an approach for solving ML and AI problems using simulations with the Unity engine
  • Use a game engine to synthesize images for use as training data
  • Create simulation environments designed for training deep reinforcement learning and imitation learning models
  • Use and apply efficient general-purpose algorithms for simulation-based ML, such as proximal policy optimization
  • Train a variety of ML models using different approaches
  • Enable ML tools to work with industry-standard game development tools, using PyTorch, and the Unity ML-Agents and Perception Toolkits

Reviews

  • No reviews
0 customers have rated this item.
5
0%
4
0%
3
0%
2
0%
1
0%
(will not be displayed)