75,68 €
84,09 €
-10% with code: EXTRA
Practical Full Stack Machine Learning
Practical Full Stack Machine Learning
75,68
84,09 €
  • We will send in 10–14 business days.
Master the ML process, from pipeline development to model deployment in production. KEY FEATURES ● Prime focus on feature-engineering, model-exploration & optimization, dataops, ML pipeline, and scaling ML API.● A step-by-step approach to cover every data science task with utmost efficiency and highest performance.● Access to advanced data engineering and ML tools like AirFlow, MLflow, and ensemble techniques. WHAT YOU WILL LEARN● Learn how to create reusable machine lea…
84.09
  • Publisher:
  • Year: 2021
  • Pages: 424
  • ISBN-10: 9391030424
  • ISBN-13: 9789391030421
  • Format: 19.1 x 23.5 x 2.2 cm, minkšti viršeliai
  • Language: English
  • SAVE -10% with code: EXTRA

Practical Full Stack Machine Learning (e-book) (used book) | bookbook.eu

Reviews

(3.00 Goodreads rating)

Description

Master the ML process, from pipeline development to model deployment in production.

KEY FEATURES

● Prime focus on feature-engineering, model-exploration & optimization, dataops, ML pipeline, and scaling ML API.

● A step-by-step approach to cover every data science task with utmost efficiency and highest performance.

● Access to advanced data engineering and ML tools like AirFlow, MLflow, and ensemble techniques.

WHAT YOU WILL LEARN

● Learn how to create reusable machine learning pipelines that are ready for production.

● Implement scalable solutions for pre-processing data tasks using DASK.

● Experiment with ensembling techniques like Bagging, Stacking, and Boosting methods.

● Learn how to use Airflow to automate your ETL tasks for data preparation.

● Learn MLflow for training, reprocessing, and deployment of models created with any library.

● Workaround cookiecutter, KerasTuner, DVC, fastAPI, and a lot more.


WHO THIS BOOK IS FOR

This book is geared toward data scientists who want to become more proficient in the entire process of developing ML applications from start to finish. Knowing the fundamentals of machine learning and Keras programming would be an essential requirement.

TABLE OF CONTENTS

1. Organizing Your Data Science Project

2. Preparing Your Data Structure

3. Building Your ML Architecture

4. Bye-Bye Scheduler, Welcome Airflow

5. Organizing Your Data Science Project Structure

6. Feature Store for ML

7. Serving ML as API

EXTRA 10 % discount with code: EXTRA

75,68
84,09 €
We will send in 10–14 business days.

The promotion ends in 22d.12:28:11

The discount code is valid when purchasing from 10 €. Discounts do not stack.

Log in and for this item
you will receive 0,84 Book Euros!?
  • Author: Alok Kumar
  • Publisher:
  • Year: 2021
  • Pages: 424
  • ISBN-10: 9391030424
  • ISBN-13: 9789391030421
  • Format: 19.1 x 23.5 x 2.2 cm, minkšti viršeliai
  • Language: English English

Master the ML process, from pipeline development to model deployment in production.

KEY FEATURES

● Prime focus on feature-engineering, model-exploration & optimization, dataops, ML pipeline, and scaling ML API.

● A step-by-step approach to cover every data science task with utmost efficiency and highest performance.

● Access to advanced data engineering and ML tools like AirFlow, MLflow, and ensemble techniques.

WHAT YOU WILL LEARN

● Learn how to create reusable machine learning pipelines that are ready for production.

● Implement scalable solutions for pre-processing data tasks using DASK.

● Experiment with ensembling techniques like Bagging, Stacking, and Boosting methods.

● Learn how to use Airflow to automate your ETL tasks for data preparation.

● Learn MLflow for training, reprocessing, and deployment of models created with any library.

● Workaround cookiecutter, KerasTuner, DVC, fastAPI, and a lot more.


WHO THIS BOOK IS FOR

This book is geared toward data scientists who want to become more proficient in the entire process of developing ML applications from start to finish. Knowing the fundamentals of machine learning and Keras programming would be an essential requirement.

TABLE OF CONTENTS

1. Organizing Your Data Science Project

2. Preparing Your Data Structure

3. Building Your ML Architecture

4. Bye-Bye Scheduler, Welcome Airflow

5. Organizing Your Data Science Project Structure

6. Feature Store for ML

7. Serving ML as API

Reviews

  • No reviews
0 customers have rated this item.
5
0%
4
0%
3
0%
2
0%
1
0%
(will not be displayed)