Reviews
Description
The book outlines a series of developments made in the manufacturing of bio-functional layers via Physical Vapour-Deposited (PVD) technologies for application in various areas of healthcare. The scrutinized PVD methods include Radio-Frequency Magnetron Sputtering (RF-MS), Cathodic Arc Evaporation, Pulsed Electron Deposition and its variants, Pulsed Laser Deposition, and Matrix-Assisted Pulsed Laser Evaporation (MAPLE) due to their great promise, especially in dentistry and orthopaedics. These methods have yet to gain traction for industrialization and large-scale application in biomedicine. A new generation of implant coatings can be made available by the (1) incorporation of organic moieties (e.g., proteins, peptides, enzymes) into thin films using innovative methods such as combinatorial MAPLE, (2) direct coupling of therapeutic agents with bioactive glasses or ceramics within substituted or composite layers via RF-MS, or (3) innovation in high-energy deposition methods, such as arc evaporation or pulsed electron beam methods.
EXTRA 10 % discount with code: EXTRA
The promotion ends in 16d.11:59:27
The discount code is valid when purchasing from 10 €. Discounts do not stack.
The book outlines a series of developments made in the manufacturing of bio-functional layers via Physical Vapour-Deposited (PVD) technologies for application in various areas of healthcare. The scrutinized PVD methods include Radio-Frequency Magnetron Sputtering (RF-MS), Cathodic Arc Evaporation, Pulsed Electron Deposition and its variants, Pulsed Laser Deposition, and Matrix-Assisted Pulsed Laser Evaporation (MAPLE) due to their great promise, especially in dentistry and orthopaedics. These methods have yet to gain traction for industrialization and large-scale application in biomedicine. A new generation of implant coatings can be made available by the (1) incorporation of organic moieties (e.g., proteins, peptides, enzymes) into thin films using innovative methods such as combinatorial MAPLE, (2) direct coupling of therapeutic agents with bioactive glasses or ceramics within substituted or composite layers via RF-MS, or (3) innovation in high-energy deposition methods, such as arc evaporation or pulsed electron beam methods.
Reviews