Reviews
Description
Permanent magnet synchronous motors (PMSMs) have been used in the field of electric vehicles due to their high-power density, large torque to inertia ratio, and high reliability. This book presents an improved Field-oriented control (FOC) strategy, for optimal proportional-integral (PI) parameters for robust stability, faster dynamic response, and higher efficiency in the flux-weakening region. Combined design of a PI current regulator and a varying switching frequency PWM is presented, including improved linear model predictive control (MPC) control strategy. This book is aimed at researchers and graduate students in electrical Engineering, systems and control, and electric vehicles.
Features:
This book is aimed at researchers, graduate students, and libraries in electrical engineering with specialization in systems and control and electric vehicles.
EXTRA 10 % discount with code: EXTRA
The promotion ends in 22d.06:40:43
The discount code is valid when purchasing from 10 €. Discounts do not stack.
Permanent magnet synchronous motors (PMSMs) have been used in the field of electric vehicles due to their high-power density, large torque to inertia ratio, and high reliability. This book presents an improved Field-oriented control (FOC) strategy, for optimal proportional-integral (PI) parameters for robust stability, faster dynamic response, and higher efficiency in the flux-weakening region. Combined design of a PI current regulator and a varying switching frequency PWM is presented, including improved linear model predictive control (MPC) control strategy. This book is aimed at researchers and graduate students in electrical Engineering, systems and control, and electric vehicles.
Features:
This book is aimed at researchers, graduate students, and libraries in electrical engineering with specialization in systems and control and electric vehicles.
Reviews