Reviews
Description
Many of the engineering applications require linear algebra to furnish the analysis. Singular Value Decomposition is one of the most powerful tool of linear algebra. This method alone serves many computational and analytical purposes. Although the computation of SVD of a matrix is bulky, the process involves a sequence of vector operations. This makes it a good candidate for parallelization of over Graphic Processors. This book proposes parallelization of SVD modules in LAPACK over GPGPU using OpenCL, which is platform independent and focuses on routines beyond BLAS.
EXTRA 10 % discount with code: EXTRA
The promotion ends in 21d.15:02:46
The discount code is valid when purchasing from 10 €. Discounts do not stack.
Many of the engineering applications require linear algebra to furnish the analysis. Singular Value Decomposition is one of the most powerful tool of linear algebra. This method alone serves many computational and analytical purposes. Although the computation of SVD of a matrix is bulky, the process involves a sequence of vector operations. This makes it a good candidate for parallelization of over Graphic Processors. This book proposes parallelization of SVD modules in LAPACK over GPGPU using OpenCL, which is platform independent and focuses on routines beyond BLAS.
Reviews