229,67 €
255,19 €
-10% with code: EXTRA
Nanotechnologies, Hazards and Resource Efficiency
Nanotechnologies, Hazards and Resource Efficiency
229,67
255,19 €
  • We will send in 10–14 business days.
Nanotechnology is frequently described as an enabling technology and 1 fundamental innovation, i.e. it is expected to lead to numerous innovative developments in the most diverse fields of technology and areas of app- cation in society and the marketplace. The technology, it is believed, has the potential for far-reaching changes that will eventually affect all areas of life. Such changes will doubtlessly have strong repercussions for society and the environment and bring with them not only the…
255.19
  • Publisher:
  • Year: 2010
  • Pages: 271
  • ISBN-10: 3642093124
  • ISBN-13: 9783642093128
  • Format: 15.6 x 23.4 x 1.5 cm, minkšti viršeliai
  • Language: English
  • SAVE -10% with code: EXTRA

Nanotechnologies, Hazards and Resource Efficiency (e-book) (used book) | bookbook.eu

Reviews

Description

Nanotechnology is frequently described as an enabling technology and 1 fundamental innovation, i.e. it is expected to lead to numerous innovative developments in the most diverse fields of technology and areas of app- cation in society and the marketplace. The technology, it is believed, has the potential for far-reaching changes that will eventually affect all areas of life. Such changes will doubtlessly have strong repercussions for society and the environment and bring with them not only the desired and intended effects such as innovations in the form of improvements to products, pr- esses and materials; economic growth; new jobs for skilled workers; relief for the environment; and further steps toward sustainable business, but also unexpected and undesirable side effects and consequences. With respect to the time spans in which nanotechnology's full potential 2 will presumably unfold, M. C. Roco (2002:5) identified the following stages or generations for industrial prototypes and their commercial expl- tation: Past and present: The "coincidental" use of nanotechnology. Carbon black, for example, has been in use for centuries; more specific, isolated applications (catalysts, composites, etc.) have been in use since the early nineties. First generation: Passive nanostructures (ca. 2001). Application p- ticularly in the areas of coatings, nanoparticles, bulk materials (nan- tructured metals, polymers, and ceramics). Second generation: Active nanostructures (ca. 2005). Fields of appli- tion: particularly in transistors, reinforcing agents, adaptive structures, etc.

EXTRA 10 % discount with code: EXTRA

229,67
255,19 €
We will send in 10–14 business days.

The promotion ends in 22d.21:51:36

The discount code is valid when purchasing from 10 €. Discounts do not stack.

Log in and for this item
you will receive 2,55 Book Euros!?
  • Author: Michael Steinfeldt
  • Publisher:
  • Year: 2010
  • Pages: 271
  • ISBN-10: 3642093124
  • ISBN-13: 9783642093128
  • Format: 15.6 x 23.4 x 1.5 cm, minkšti viršeliai
  • Language: English English

Nanotechnology is frequently described as an enabling technology and 1 fundamental innovation, i.e. it is expected to lead to numerous innovative developments in the most diverse fields of technology and areas of app- cation in society and the marketplace. The technology, it is believed, has the potential for far-reaching changes that will eventually affect all areas of life. Such changes will doubtlessly have strong repercussions for society and the environment and bring with them not only the desired and intended effects such as innovations in the form of improvements to products, pr- esses and materials; economic growth; new jobs for skilled workers; relief for the environment; and further steps toward sustainable business, but also unexpected and undesirable side effects and consequences. With respect to the time spans in which nanotechnology's full potential 2 will presumably unfold, M. C. Roco (2002:5) identified the following stages or generations for industrial prototypes and their commercial expl- tation: Past and present: The "coincidental" use of nanotechnology. Carbon black, for example, has been in use for centuries; more specific, isolated applications (catalysts, composites, etc.) have been in use since the early nineties. First generation: Passive nanostructures (ca. 2001). Application p- ticularly in the areas of coatings, nanoparticles, bulk materials (nan- tructured metals, polymers, and ceramics). Second generation: Active nanostructures (ca. 2005). Fields of appli- tion: particularly in transistors, reinforcing agents, adaptive structures, etc.

Reviews

  • No reviews
0 customers have rated this item.
5
0%
4
0%
3
0%
2
0%
1
0%
(will not be displayed)