Reviews
Description
There is a strong need to store electrical energy from fluctuating renewable energy sources such as solar or wind and to decarbonize transport and industry. High-temperature electrolysis is expected to contribute significantly to reach these goals. This reference text provides a detailed guide, including the fundamental and materials aspects of solid oxide and protonic ceramic electrolysis cells at stack and system levels, as well as recent developments. Applications discussed include the production of green hydrogen as well as the combination of high-temperature electrolysis with other processes for the synthesis of ammonia, methane or e-fuels. Highly relevant to the field of renewable energy supply and conversion, the text provides a comprehensive and accessible reference for researchers, engineers, and graduate students from various disciplines.
Key Features
EXTRA 10 % discount with code: EXTRA
The promotion ends in 20d.17:35:18
The discount code is valid when purchasing from 10 €. Discounts do not stack.
There is a strong need to store electrical energy from fluctuating renewable energy sources such as solar or wind and to decarbonize transport and industry. High-temperature electrolysis is expected to contribute significantly to reach these goals. This reference text provides a detailed guide, including the fundamental and materials aspects of solid oxide and protonic ceramic electrolysis cells at stack and system levels, as well as recent developments. Applications discussed include the production of green hydrogen as well as the combination of high-temperature electrolysis with other processes for the synthesis of ammonia, methane or e-fuels. Highly relevant to the field of renewable energy supply and conversion, the text provides a comprehensive and accessible reference for researchers, engineers, and graduate students from various disciplines.
Key Features
Reviews