139,49 €
154,99 €
-10% with code: EXTRA
Hamiltonian Group Actions and Equivariant Cohomology
Hamiltonian Group Actions and Equivariant Cohomology
139,49
154,99 €
  • We will send in 10–14 business days.
Symplectic vector spaces.- Hamiltonian group actions.- The Darboux-Weinstein Theorem.- Elementary properties of moment maps.- The symplectic structure on coadjoint orbits.- Symplectic Reduction.- Convexity.- Toric Manifolds.- Equivariant Cohomology.- The Duistermaat-Heckman Theorem.- Geometric Quantization.- Flat connections on 2-manifolds.
  • Publisher:
  • ISBN-10: 3030272265
  • ISBN-13: 9783030272265
  • Format: 15.6 x 23.4 x 0.8 cm, softcover
  • Language: English
  • SAVE -10% with code: EXTRA

Hamiltonian Group Actions and Equivariant Cohomology (e-book) (used book) | bookbook.eu

Reviews

Description

Symplectic vector spaces.- Hamiltonian group actions.- The Darboux-Weinstein Theorem.- Elementary properties of moment maps.- The symplectic structure on coadjoint orbits.- Symplectic Reduction.- Convexity.- Toric Manifolds.- Equivariant Cohomology.- The Duistermaat-Heckman Theorem.- Geometric Quantization.- Flat connections on 2-manifolds.

EXTRA 10 % discount with code: EXTRA

139,49
154,99 €
We will send in 10–14 business days.

The promotion ends in 19d.03:27:53

The discount code is valid when purchasing from 10 €. Discounts do not stack.

Log in and for this item
you will receive 1,55 Book Euros!?
  • Author: Shubham Dwivedi
  • Publisher:
  • ISBN-10: 3030272265
  • ISBN-13: 9783030272265
  • Format: 15.6 x 23.4 x 0.8 cm, softcover
  • Language: English English

Symplectic vector spaces.- Hamiltonian group actions.- The Darboux-Weinstein Theorem.- Elementary properties of moment maps.- The symplectic structure on coadjoint orbits.- Symplectic Reduction.- Convexity.- Toric Manifolds.- Equivariant Cohomology.- The Duistermaat-Heckman Theorem.- Geometric Quantization.- Flat connections on 2-manifolds.

Reviews

  • No reviews
0 customers have rated this item.
5
0%
4
0%
3
0%
2
0%
1
0%
(will not be displayed)