Reviews
Description
A survey of recent developments in the field of non-linear analysis and the geometry of mappings. Sobolev mappings, quasiconformal mappings, or deformations, between subsets of Euclidean space, or manifolds or more general geometric objects may arise as the solutions to certain optimization problems in the calculus of variations or in non-linear elasticity, as the solutions to differential equations (particularly in conformal geometry), as local co-ordinates on a manifold or as geometric realizations of abstract isomorphisms between spaces such as those that arise in dynamical systems (for instance in holomorphic dynamics and Kleinian groups). In each case the regularity and geometric properties of these mappings and related non-linear quantities such as Jacobians, tells something about the problems and the spaces under consideration.
EXTRA 10 % discount with code: EXTRA
The promotion ends in 16d.15:28:06
The discount code is valid when purchasing from 10 €. Discounts do not stack.
A survey of recent developments in the field of non-linear analysis and the geometry of mappings. Sobolev mappings, quasiconformal mappings, or deformations, between subsets of Euclidean space, or manifolds or more general geometric objects may arise as the solutions to certain optimization problems in the calculus of variations or in non-linear elasticity, as the solutions to differential equations (particularly in conformal geometry), as local co-ordinates on a manifold or as geometric realizations of abstract isomorphisms between spaces such as those that arise in dynamical systems (for instance in holomorphic dynamics and Kleinian groups). In each case the regularity and geometric properties of these mappings and related non-linear quantities such as Jacobians, tells something about the problems and the spaces under consideration.
Reviews