Reviews
Description
This book provides definitions and mathematical derivations of fundamental relationships of tensor analysis encountered in nonlinear continuum mechanics and continuum physics, with a focus on finite deformation kinematics and classical differential geometry. Of particular interest are anholonomic aspects arising from a multiplicative decomposition of the deformation gradient into two terms, neither of which in isolation necessarily obeys the integrability conditions satisfied by the gradient of a smooth vector field. The concise format emphasizes clarity and ease of reference, and detailed step-by-step derivations of most analytical results are provided.
Sample Chapter(s)
Chapter 1: Introduction (117 KB)
Contents: IntroductionGeometric FundamentalsKinematics of Integrable DeformationGeometry of Anholonomic DeformationKinematics of Anholonomic DeformationList of SymbolsBibliographyIndex
Readership: Researchers in mathematical physics and engineering mechanics.
EXTRA 10 % discount with code: EXTRA
The promotion ends in 19d.06:46:46
The discount code is valid when purchasing from 10 €. Discounts do not stack.
This book provides definitions and mathematical derivations of fundamental relationships of tensor analysis encountered in nonlinear continuum mechanics and continuum physics, with a focus on finite deformation kinematics and classical differential geometry. Of particular interest are anholonomic aspects arising from a multiplicative decomposition of the deformation gradient into two terms, neither of which in isolation necessarily obeys the integrability conditions satisfied by the gradient of a smooth vector field. The concise format emphasizes clarity and ease of reference, and detailed step-by-step derivations of most analytical results are provided.
Sample Chapter(s)
Chapter 1: Introduction (117 KB)
Contents: IntroductionGeometric FundamentalsKinematics of Integrable DeformationGeometry of Anholonomic DeformationKinematics of Anholonomic DeformationList of SymbolsBibliographyIndex
Readership: Researchers in mathematical physics and engineering mechanics.
Reviews