276,20 €
306,89 €
-10% with code: EXTRA
Deep Learning Approaches for Security Threats in IoT Environments
Deep Learning Approaches for Security Threats in IoT Environments
276,20
306,89 €
  • We will send in 10–14 business days.
Deep Learning Approaches for Security Threats in IoT Environments An expert discussion of the application of deep learning methods in the IoT security environment In Deep Learning Approaches for Security Threats in IoT Environments, a team of distinguished cybersecurity educators deliver an insightful and robust exploration of how to approach and measure the security of Internet-of-Things (IoT) systems and networks. In this book, readers will examine critical concepts in artificial intelligence…
  • SAVE -10% with code: EXTRA

Deep Learning Approaches for Security Threats in IoT Environments (e-book) (used book) | bookbook.eu

Reviews

(5.00 Goodreads rating)

Description

Deep Learning Approaches for Security Threats in IoT Environments

An expert discussion of the application of deep learning methods in the IoT security environment

In Deep Learning Approaches for Security Threats in IoT Environments, a team of distinguished cybersecurity educators deliver an insightful and robust exploration of how to approach and measure the security of Internet-of-Things (IoT) systems and networks. In this book, readers will examine critical concepts in artificial intelligence (AI) and IoT, and apply effective strategies to help secure and protect IoT networks. The authors discuss supervised, semi-supervised, and unsupervised deep learning techniques, as well as reinforcement and federated learning methods for privacy preservation.

This book applies deep learning approaches to IoT networks and solves the security problems that professionals frequently encounter when working in the field of IoT, as well as providing ways in which smart devices can solve cybersecurity issues.

Readers will also get access to a companion website with PowerPoint presentations, links to supporting videos, and additional resources. They'll also find:

  • A thorough introduction to artificial intelligence and the Internet of Things, including key concepts like deep learning, security, and privacy
  • Comprehensive discussions of the architectures, protocols, and standards that form the foundation of deep learning for securing modern IoT systems and networks
  • In-depth examinations of the architectural design of cloud, fog, and edge computing networks
  • Fulsome presentations of the security requirements, threats, and countermeasures relevant to IoT networks

Perfect for professionals working in the AI, cybersecurity, and IoT industries, Deep Learning Approaches for Security Threats in IoT Environments will also earn a place in the libraries of undergraduate and graduate students studying deep learning, cybersecurity, privacy preservation, and the security of IoT networks.

EXTRA 10 % discount with code: EXTRA

276,20
306,89 €
We will send in 10–14 business days.

The promotion ends in 21d.03:46:49

The discount code is valid when purchasing from 10 €. Discounts do not stack.

Log in and for this item
you will receive 3,07 Book Euros!?

Deep Learning Approaches for Security Threats in IoT Environments

An expert discussion of the application of deep learning methods in the IoT security environment

In Deep Learning Approaches for Security Threats in IoT Environments, a team of distinguished cybersecurity educators deliver an insightful and robust exploration of how to approach and measure the security of Internet-of-Things (IoT) systems and networks. In this book, readers will examine critical concepts in artificial intelligence (AI) and IoT, and apply effective strategies to help secure and protect IoT networks. The authors discuss supervised, semi-supervised, and unsupervised deep learning techniques, as well as reinforcement and federated learning methods for privacy preservation.

This book applies deep learning approaches to IoT networks and solves the security problems that professionals frequently encounter when working in the field of IoT, as well as providing ways in which smart devices can solve cybersecurity issues.

Readers will also get access to a companion website with PowerPoint presentations, links to supporting videos, and additional resources. They'll also find:

  • A thorough introduction to artificial intelligence and the Internet of Things, including key concepts like deep learning, security, and privacy
  • Comprehensive discussions of the architectures, protocols, and standards that form the foundation of deep learning for securing modern IoT systems and networks
  • In-depth examinations of the architectural design of cloud, fog, and edge computing networks
  • Fulsome presentations of the security requirements, threats, and countermeasures relevant to IoT networks

Perfect for professionals working in the AI, cybersecurity, and IoT industries, Deep Learning Approaches for Security Threats in IoT Environments will also earn a place in the libraries of undergraduate and graduate students studying deep learning, cybersecurity, privacy preservation, and the security of IoT networks.

Reviews

  • No reviews
0 customers have rated this item.
5
0%
4
0%
3
0%
2
0%
1
0%
(will not be displayed)