227,15 €
252,39 €
-10% with code: EXTRA
Computation of Generalized Matrix Inverses and Applications
Computation of Generalized Matrix Inverses and Applications
227,15
252,39 €
  • We will send in 10–14 business days.
This volume offers a gradual exposition to matrix theory as a subject of linear algebra. It presents both the theoretical results in generalized matrix inverses and the applications. The book is as self-contained as possible, assuming no prior knowledge of matrix theory and linear algebra.The book first addresses the basic definitions and concepts of an arbitrary generalized matrix inverse with special reference to the calculation of {i, j, ..., k} inverse and the Moore-Penrose inverse. Then, t…
  • SAVE -10% with code: EXTRA

Computation of Generalized Matrix Inverses and Applications (e-book) (used book) | bookbook.eu

Reviews

Description

This volume offers a gradual exposition to matrix theory as a subject of linear algebra. It presents both the theoretical results in generalized matrix inverses and the applications. The book is as self-contained as possible, assuming no prior knowledge of matrix theory and linear algebra.





The book first addresses the basic definitions and concepts of an arbitrary generalized matrix inverse with special reference to the calculation of {i, j, ..., k} inverse and the Moore-Penrose inverse. Then, the results of LDL* decomposition of the full rank polynomial matrix are introduced, along with numerical examples. Methods for calculating the Moore-Penrose's inverse of rational matrix are presented, which are based on LDL* and QDR decompositions of the matrix. A method for calculating the A(2)T;S inverse using LDL* decomposition using methods is derived as well as the symbolic calculation of A(2)T;S inverses using QDR factorization.





The text then offers several ways on how the introduced theoretical concepts can be applied in restoring blurred images and linear regression methods, along with the well-known application in linear systems. The book also explains how the computation of generalized inverses of matrices with constant values is performed. It covers several methods, such as methods based on full-rank factorization, Leverrier-Faddeev method, method of Zhukovski, and variations of the partitioning method.

EXTRA 10 % discount with code: EXTRA

227,15
252,39 €
We will send in 10–14 business days.

The promotion ends in 20d.02:51:55

The discount code is valid when purchasing from 10 €. Discounts do not stack.

Log in and for this item
you will receive 2,52 Book Euros!?

This volume offers a gradual exposition to matrix theory as a subject of linear algebra. It presents both the theoretical results in generalized matrix inverses and the applications. The book is as self-contained as possible, assuming no prior knowledge of matrix theory and linear algebra.





The book first addresses the basic definitions and concepts of an arbitrary generalized matrix inverse with special reference to the calculation of {i, j, ..., k} inverse and the Moore-Penrose inverse. Then, the results of LDL* decomposition of the full rank polynomial matrix are introduced, along with numerical examples. Methods for calculating the Moore-Penrose's inverse of rational matrix are presented, which are based on LDL* and QDR decompositions of the matrix. A method for calculating the A(2)T;S inverse using LDL* decomposition using methods is derived as well as the symbolic calculation of A(2)T;S inverses using QDR factorization.





The text then offers several ways on how the introduced theoretical concepts can be applied in restoring blurred images and linear regression methods, along with the well-known application in linear systems. The book also explains how the computation of generalized inverses of matrices with constant values is performed. It covers several methods, such as methods based on full-rank factorization, Leverrier-Faddeev method, method of Zhukovski, and variations of the partitioning method.

Reviews

  • No reviews
0 customers have rated this item.
5
0%
4
0%
3
0%
2
0%
1
0%
(will not be displayed)