72,62 €
80,69 €
-10% with code: EXTRA
Characterisation of a Nickel-Iron Battolyser
Characterisation of a Nickel-Iron Battolyser
72,62
80,69 €
  • We will send in 10–14 business days.
Low-carbon electricity systems require energy storage on all time scales to accommodate the variations in solar and wind power. The research described in this book builds on recent research into nickel-iron battery-electrolysers or "battolysers" as both short-term and long-term energy storage. For short-term cycling as a battery, the internal resistances and time constants have been measured, including the component values of resistors and capacitors in equivalent circuits. The dependence of th…
  • Publisher:
  • ISBN-10: 1636482422
  • ISBN-13: 9781636482422
  • Format: 15.2 x 22.9 x 0.3 cm, softcover
  • Language: English
  • SAVE -10% with code: EXTRA

Characterisation of a Nickel-Iron Battolyser (e-book) (used book) | bookbook.eu

Reviews

Description

Low-carbon electricity systems require energy storage on all time scales to accommodate the variations in solar and wind power. The research described in this book builds on recent research into nickel-iron battery-electrolysers or "battolysers" as both short-term and long-term energy storage. For short-term cycling as a battery, the internal resistances and time constants have been measured, including the component values of resistors and capacitors in equivalent circuits. The dependence of these values on state-of-charge and temperature have also been measured. The results confirm that a nickel-iron cell can hold 25% more than its nominal charge. However, this increased capacity disappears at temperatures of 60°C and may be dissipated quickly by self-discharge. When operating as an electrolyser for long-term energy storage, the experiments have established the importance of a separation gap between each electrode and the membrane for gas evolution and established the optimum size of this gap as approximately 1.25 mm. The nickel-iron cell has acceptable performance as an electrolyser for Power-to-X energy conversion but its large internal resistance limits voltage efficiency to 75% at a 5 hour charge and discharge rate, with or without a bubble separation membrane.

EXTRA 10 % discount with code: EXTRA

72,62
80,69 €
We will send in 10–14 business days.

The promotion ends in 21d.00:10:04

The discount code is valid when purchasing from 10 €. Discounts do not stack.

Log in and for this item
you will receive 0,81 Book Euros!?
  • Author: Rupert Gammon
  • Publisher:
  • ISBN-10: 1636482422
  • ISBN-13: 9781636482422
  • Format: 15.2 x 22.9 x 0.3 cm, softcover
  • Language: English English

Low-carbon electricity systems require energy storage on all time scales to accommodate the variations in solar and wind power. The research described in this book builds on recent research into nickel-iron battery-electrolysers or "battolysers" as both short-term and long-term energy storage. For short-term cycling as a battery, the internal resistances and time constants have been measured, including the component values of resistors and capacitors in equivalent circuits. The dependence of these values on state-of-charge and temperature have also been measured. The results confirm that a nickel-iron cell can hold 25% more than its nominal charge. However, this increased capacity disappears at temperatures of 60°C and may be dissipated quickly by self-discharge. When operating as an electrolyser for long-term energy storage, the experiments have established the importance of a separation gap between each electrode and the membrane for gas evolution and established the optimum size of this gap as approximately 1.25 mm. The nickel-iron cell has acceptable performance as an electrolyser for Power-to-X energy conversion but its large internal resistance limits voltage efficiency to 75% at a 5 hour charge and discharge rate, with or without a bubble separation membrane.

Reviews

  • No reviews
0 customers have rated this item.
5
0%
4
0%
3
0%
2
0%
1
0%
(will not be displayed)