104,57 €
116,19 €
-10% with code: EXTRA
Causal AI
Causal AI
104,57
116,19 €
  • We will send in 10–14 business days.
How do you know what might have happened, had you done things differently? Causal machine learning gives you the insight you need to make predictions and control outcomes based on causal relationships instead of pure correlation, so you can make precise and timely interventions. In Causal AI you will learn how to: Build causal reinforcement learning algorithms Implement causal inference with modern probabilistic machine tools such as PyTorch and Pyro Compare and contrast statistical and econo…
116.19
  • SAVE -10% with code: EXTRA

Causal AI (e-book) (used book) | Robert Ness | bookbook.eu

Reviews

(4.00 Goodreads rating)

Description

How do you know what might have happened, had you done things differently? Causal machine learning gives you the insight you need to make predictions and control outcomes based on causal relationships instead of pure correlation, so you can make precise and timely interventions.

In Causal AI you will learn how to:

  • Build causal reinforcement learning algorithms
  • Implement causal inference with modern probabilistic machine tools such as PyTorch and Pyro
  • Compare and contrast statistical and econometric methods for causal inference
  • Set up algorithms for attribution, credit assignment, and explanation
  • Convert domain expertise into explainable causal models

Causal AI is a practical introduction to building AI models that can reason about causality. Author Robert Ness, a leading researcher in causal AI at Microsoft Research, brings his unique expertise to this cutting-edge guide. His clear, code-first approach explains essential details of causal machine learning that are hidden in academic papers. Everything you learn can be easily and effectively applied to industry challenges, from building explainable causal models to predicting counterfactual outcomes.

Purchase of the print book includes a free eBook in PDF and ePub formats from Manning Publications.

About the technology

Causal machine learning is a major milestone in machine learning, allowing AI models to make accurate predictions based on causes rather than just correlations. Causal techniques help you make models that are more robust, explainable, and fair, and have a wide range of applications, from improving recommendation engines to perfecting self-driving cars.

About the book

Causal AI teaches you how to build machine learning and deep learning models that implement causal reasoning. Discover why leading AI engineers are so excited by causal reasoning, and develop a high-level understanding of this next major trend in AI. New techniques are demonstrated with example models for solving industry-relevant problems. You'll learn about causality for recommendations; causal modeling of online conversions; and uplift, attribution, and churn modeling. Each technique is tested against a common set of problems, data, and Python libraries, so you can compare and contrast which will work best for you.

About the reader

For data scientists and machine learning engineers. A familiarity with probability and statistics will be helpful, but not essential, to begin this guide. Examples in Python.

About the author

Robert Ness is a leading researcher in causal AI at Microsoft Research. He is a contributor to open-source causal inference packages such as Python's DoWhy and R's bnlearn.

EXTRA 10 % discount with code: EXTRA

104,57
116,19 €
We will send in 10–14 business days.

The promotion ends in 22d.02:55:10

The discount code is valid when purchasing from 10 €. Discounts do not stack.

Log in and for this item
you will receive 1,16 Book Euros!?
  • Author: Robert Ness
  • Publisher:
  • ISBN-10: 1633439917
  • ISBN-13: 9781633439917
  • Format: 18.8 x 23.4 x 3.1 cm, minkšti viršeliai
  • Language: English English

How do you know what might have happened, had you done things differently? Causal machine learning gives you the insight you need to make predictions and control outcomes based on causal relationships instead of pure correlation, so you can make precise and timely interventions.

In Causal AI you will learn how to:

  • Build causal reinforcement learning algorithms
  • Implement causal inference with modern probabilistic machine tools such as PyTorch and Pyro
  • Compare and contrast statistical and econometric methods for causal inference
  • Set up algorithms for attribution, credit assignment, and explanation
  • Convert domain expertise into explainable causal models

Causal AI is a practical introduction to building AI models that can reason about causality. Author Robert Ness, a leading researcher in causal AI at Microsoft Research, brings his unique expertise to this cutting-edge guide. His clear, code-first approach explains essential details of causal machine learning that are hidden in academic papers. Everything you learn can be easily and effectively applied to industry challenges, from building explainable causal models to predicting counterfactual outcomes.

Purchase of the print book includes a free eBook in PDF and ePub formats from Manning Publications.

About the technology

Causal machine learning is a major milestone in machine learning, allowing AI models to make accurate predictions based on causes rather than just correlations. Causal techniques help you make models that are more robust, explainable, and fair, and have a wide range of applications, from improving recommendation engines to perfecting self-driving cars.

About the book

Causal AI teaches you how to build machine learning and deep learning models that implement causal reasoning. Discover why leading AI engineers are so excited by causal reasoning, and develop a high-level understanding of this next major trend in AI. New techniques are demonstrated with example models for solving industry-relevant problems. You'll learn about causality for recommendations; causal modeling of online conversions; and uplift, attribution, and churn modeling. Each technique is tested against a common set of problems, data, and Python libraries, so you can compare and contrast which will work best for you.

About the reader

For data scientists and machine learning engineers. A familiarity with probability and statistics will be helpful, but not essential, to begin this guide. Examples in Python.

About the author

Robert Ness is a leading researcher in causal AI at Microsoft Research. He is a contributor to open-source causal inference packages such as Python's DoWhy and R's bnlearn.

Reviews

  • No reviews
0 customers have rated this item.
5
0%
4
0%
3
0%
2
0%
1
0%
(will not be displayed)