The Global War on Terror with specific emphasis on the recent military operation in Afghanistan has shown the invaluable contribution that heavy lift helicopters bring to the combatant commander. However, the flight range, altitudes and lift capability required to operate effectively in such an austere environment are pushing the limits of these helicopters. In an attempt to increase the operational capability of the CH-53E, this study will investigate methods for maximizing tail rotor effectiv…
The Global War on Terror with specific emphasis on the recent military operation in Afghanistan has shown the invaluable contribution that heavy lift helicopters bring to the combatant commander. However, the flight range, altitudes and lift capability required to operate effectively in such an austere environment are pushing the limits of these helicopters. In an attempt to increase the operational capability of the CH-53E, this study will investigate methods for maximizing tail rotor effectiveness at high gross weights and high altitudes. This thesis records an analytical study designed to investigate the intricacies of tail rotor design and, by the computational simulation afforded through the Rotorcraft Comprehensive Analysis System (RCAS), define a tail rotor at high altitude that will reduce the tail rotor power required in hover by 10%. The versatility required of the tail rotor is seen due to the nature of the flow regime, which requires the tail rotor to effectively operate with inflow velocity from any direction, with a spanwise distribution of flow that produces Reynolds numbers up to 5.6e7 and with pilot commanded pitch changes from -10 to 24 degrees. With little to no assistance from the vertical fin, the tail rotor is most heavily relied on for antitorque response in hover; therefore, focus will be placed on hovering efficiencies tempered by solid forward flight and hover slide performance.
The Global War on Terror with specific emphasis on the recent military operation in Afghanistan has shown the invaluable contribution that heavy lift helicopters bring to the combatant commander. However, the flight range, altitudes and lift capability required to operate effectively in such an austere environment are pushing the limits of these helicopters. In an attempt to increase the operational capability of the CH-53E, this study will investigate methods for maximizing tail rotor effectiveness at high gross weights and high altitudes. This thesis records an analytical study designed to investigate the intricacies of tail rotor design and, by the computational simulation afforded through the Rotorcraft Comprehensive Analysis System (RCAS), define a tail rotor at high altitude that will reduce the tail rotor power required in hover by 10%. The versatility required of the tail rotor is seen due to the nature of the flow regime, which requires the tail rotor to effectively operate with inflow velocity from any direction, with a spanwise distribution of flow that produces Reynolds numbers up to 5.6e7 and with pilot commanded pitch changes from -10 to 24 degrees. With little to no assistance from the vertical fin, the tail rotor is most heavily relied on for antitorque response in hover; therefore, focus will be placed on hovering efficiencies tempered by solid forward flight and hover slide performance.
Reviews
No reviews
0 customers have rated this item.
5
0%
4
0%
3
0%
2
0%
1
0%
Price guarantee
Bookbook.eu guarantees the best price for items marked with the “Price Guarantee” badge. If an identical item costs less at another online store, we will refund the price difference. Prices are compared with the prices of items at the list of stores specified by bookbook.eu. Bookbook.eu undertakes to refund the price difference to the customer who applies under the conditions specified in the “Price Guarantee” rules. Learn more
E-book
22,39 €
ATTENTION!
This book is provided ACSM format. It is not suitable for standard reading devices that support EPUB or MOBI format e-books.
Important! It is not possible to download e-books when connecting from the United Kingdom.
This is a book being sold by a private person. After you pay for your order, the book seller will send it within 7 days . If the seller does not do this on time, the money will be refunded to you automatically.
The condition of this book has not been assessed by Bookbook.eu experts, so all responsibility for the stated book quality lies with the seller.
Would you also like to sell used books and earn money? Learn more here
Item successfully added to cart
Used book:
A used book sold directly from the Bookbook.eu warehouse. The book's quality has been assessed by Bookbook.eu experts.
Reviews